NATIVE OAK WOOD PROPERTIES – LIMITATIONS IN WOOD UTILIZATION AND POSSIBILITIES OF QUALITY IMPROVEMENT

Peter Rademacher1, Radim Rousek3, Marian Krüger2, Jan Baar3, Petr Čermák3, Eckhard Melcher4, Gerald Koch4, Robert Németh1, Petr Pařil3, Zuzana Paschová3, Daniela Paul4, Tanja Potsch4, Daniel Vavřík5, Ivana Kumpová5, Tamás Hofmann1, György Sipos1, Miklós Bak1, František Hapla2

1 University of West Hungary, Bajcsy-Zs. u. 4, H-9400 Sopron/ Hungary
2 University of Göttingen, Dep. Wood Biology and Wood Products, Büsgenweg 4, D-37077 Göttingen
3 Mendel University Brno, Department of Wood Science, Zemědělská 1, CZ-613 00 Brno/ Czech Rep.
4 Thünen Institute of Wood Research, Leuschnerstr. 91d, D-21031 Hamburg/ Germany
5 Center of Excellence, Batelovská 485, 486, CZ-588 56 Telč/ Czech Republic

e-mail of the corresponding author: peter.rademacher@nyme.hu

COST Action FP1407 2nd Conference –
Innovative production technologies and increased wood products recycling and reuse
Brno, Czech Republic, 29-30 September 2016
Introduction

- Scientific exchange
- Visits → Brno →:
 from <-> to
 contacts

1 – 2
3 – 5
> 5
Introduction

- Scientific exchange
- Visits → Brno:
 from <-> to
contacts (V)

1 – 2 (Z)

3 – 5 (S)

> 5 (G)
Introduction

- Scientific exchange
- Visits → Brno →:
 from <-> to
 contacts (V)
 1 – 2 (Z)
 3 – 5 (S)
 > 5 (G)
Introduction

- Scientific exchange
- Visits → Brno →:
 from <-> to
 contacts (V)

1 – 2 (Z)
3 – 5 (S)
> 5 (G)
Methods

Screening:

- **Biological investigation**
 - Decay
 - Durability class

- **Structural/optical investigation**
 - Growth
 - Microscopy
 - Color
 - Computer Tomography (CT)

- **Physical investigation**
 - Density
 - Fiber saturation range
 - Swelling/Shrinkage

- **Chemical investigation**
 - Amount of extracts
 - Content of phenolic compounds (heartwood components)
 - Sum (Photo-Spectrometry; UV-microspectrophotometer [UMSP])
 - Single components (HPLC)
Problems:

Fungi decay on sessil oak constructions (Sightseeing-tower project)

Photos: Melcher
Mass loss and durability class (CD) of the test specimens and durability test (SD = standard deviation; n = 30)

<table>
<thead>
<tr>
<th>Wood species</th>
<th>Mean [%]</th>
<th>SD [%]</th>
<th>Min. [%]</th>
<th>Max. [%]</th>
<th>x-value</th>
<th>DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beech</td>
<td>29.6</td>
<td>4.1</td>
<td>25.2</td>
<td>43.0</td>
<td>1.0</td>
<td>5</td>
</tr>
<tr>
<td>Scots pine sapwood</td>
<td>21.8</td>
<td>8.3</td>
<td>8.6</td>
<td>36.2</td>
<td>1.0</td>
<td>5</td>
</tr>
<tr>
<td>Sessile oak</td>
<td>18.7</td>
<td>1.2</td>
<td>16.8</td>
<td>21.3</td>
<td>0.6</td>
<td>4</td>
</tr>
<tr>
<td>Scots pine heartwood</td>
<td>11.0</td>
<td>8.3</td>
<td>5.1</td>
<td>17.6</td>
<td>0.4</td>
<td>3</td>
</tr>
<tr>
<td>European larch heartwood</td>
<td>10.4</td>
<td>3.1</td>
<td>5.6</td>
<td>16.5</td>
<td>0.5</td>
<td>3</td>
</tr>
</tbody>
</table>
Mass loss and durability class (CD) of the test specimens and durability test (SD = standard deviation; n = 30)

<table>
<thead>
<tr>
<th>Wood species</th>
<th>Mean [%]</th>
<th>SD [%]</th>
<th>Min. [%]</th>
<th>Max. [%]</th>
<th>x-value</th>
<th>DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beech</td>
<td>29.6</td>
<td>4.1</td>
<td>25.2</td>
<td>43.0</td>
<td>1.0</td>
<td>5</td>
</tr>
<tr>
<td>Scots pine sapwood</td>
<td>21.8</td>
<td>8.3</td>
<td>8.6</td>
<td>36.2</td>
<td>1.0</td>
<td>5</td>
</tr>
<tr>
<td>Sessile oak</td>
<td>18.7</td>
<td>1.2</td>
<td>16.8</td>
<td>21.3</td>
<td>0.6</td>
<td>4</td>
</tr>
<tr>
<td>Scots pine heartwood</td>
<td>11.0</td>
<td>8.3</td>
<td>5.1</td>
<td>17.6</td>
<td>0.4</td>
<td>3</td>
</tr>
<tr>
<td>European larch heartwood</td>
<td>10.4</td>
<td>3.1</td>
<td>5.6</td>
<td>16.5</td>
<td>0.5</td>
<td>3</td>
</tr>
</tbody>
</table>

International Biodeterioration & Biodegradation 90 (2014) 52–56

Contents lists available at ScienceDirect

International Biodeterioration & Biodegradation

journal homepage: www.elsevier.com/locate/ibiod

Investigations on natural durability of important European wood species against wood decay fungi. Part 1: Laboratory tests

K. Plaschkies a,*, K. Jacobs a, W. Scheiding a, E. Melcher b

a Institut für Holztechnologie Dresden gemeinnützige GmbH, Zellescher Weg 24, 01217 Dresden, Germany
b Thünen Institute of Wood Research, Leuschnerstraße 91d, 21031 Hamburg, Germany
Native wood durability (DC I-V)

Durability of natural and modified wood species

Teak - Robinie - Eukalyptus (A) - Western Red Cedar - Pine/heartw - Douglas/heartw - Larch/heartw - Pine/sap - Beech - Poplar - Birch - Ash

I II III IV V

← high - durability classes - low →

Source: A. Krause et al., 2002
Native wood durability (DC I-V)

Durability of natural and modified wood species

OAK acc. EN 350-2:1994 ➔ DC 2

Source: A. Krause et al., 2002
Native wood durability (DC I-V)

Durability of natural and modified wood species

<table>
<thead>
<tr>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eukalyptus (A)</td>
<td>Western Red Cedar</td>
<td>Pine/heartw</td>
<td>Douglas/heartw</td>
<td>Pine/sap</td>
</tr>
<tr>
<td>Eur.Chestnut</td>
<td>Oak</td>
<td>spruce</td>
<td>spruce</td>
<td>spruce</td>
</tr>
<tr>
<td>Teak</td>
<td>Robinie</td>
<td>Dark Red Meranti</td>
<td>Poplar</td>
<td>Ash</td>
</tr>
</tbody>
</table>

← high - durability classes - low →

Correlation Growth/ Ring Width <-> Density (YC1/ Tree5)

15_Ring widths and density

- total annual ring width (mm)
- annual ring width earlywood (mm)
- annual ring width latewood (mm)
- density 0 (kg/m³)

Krüger, Rademacher, Rousek
Correlation Growth/ Ring Width <-> Density (YC4/ Tree2)
Phenolic Compound Concentration (PhCo [mg/l]) Extract Conc. [%]

PhCo mg/l

ExCo %

Bark

Mark

YC 1/ Tr 5

YC 4/ Tr 3

Krüger, Rademacher, Rousek
Correlation Ring Width <-> Phenolic Compounds (YC1/ Tree5)
Correlation Growth/ Ring Width <-> Density (YC4/ Tree3))

Krüger, Rademacher, Rousek
Correl. ‘R’ Ring Width <-> Density <-> Phenol.Comp. (all YC/ all Trees)

Correlation coefficients of ring widths and density with phenolic contents

Krüger, Rademacher, Rousek
Correlation Lightness <-> Phenol Content (all YC/ all Trees)

\[y = -0.1931x + 71.699 \]

\[R^2 = 0.0516 \]

Krüger, Rademacher, Rousek
Correlation Lightness <-> Shrinkage (all YC/ all Trees)

\[y = -0.1011x + 15.524 \]

\[R^2 = 0.1758 \]

Krüger, Rademacher, Rousek
Correlation Phenol Content <-> Shrinkage (all YC / all Trees)

\[y = -0.0104x + 8.6677 \]

\[R^2 = 0.0029 \]

Krüger, Varvic, Rademacher, Rousek
All Correlations

Correlation matrix (R)

<table>
<thead>
<tr>
<th></th>
<th>FSR (%)</th>
<th>extractives content (%)</th>
<th>phenolic s. content (mg/l)</th>
<th>density 0 (kg/m³)</th>
<th>density max (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>total anual ring width (mm)</td>
<td>0.31</td>
<td>0.44</td>
<td>0.22</td>
<td>-0.13</td>
<td>-0.04</td>
</tr>
<tr>
<td>annual ring width earlywood (mm)</td>
<td>0.44</td>
<td>0.44</td>
<td>0.22</td>
<td>-0.13</td>
<td>-0.04</td>
</tr>
<tr>
<td>annual ring width latewood (mm)</td>
<td>-0.31</td>
<td>-0.31</td>
<td>-0.31</td>
<td>0.31</td>
<td>0.41</td>
</tr>
<tr>
<td>L*r</td>
<td>1.00</td>
<td>0.67</td>
<td>0.97</td>
<td>0.31</td>
<td>0.16</td>
</tr>
<tr>
<td>a*r</td>
<td>0.67</td>
<td>1.00</td>
<td>0.49</td>
<td>0.06</td>
<td>-0.21</td>
</tr>
<tr>
<td>b*r</td>
<td>0.97</td>
<td>0.49</td>
<td>1.00</td>
<td>-0.39</td>
<td>-0.27</td>
</tr>
<tr>
<td>L*t</td>
<td>-0.31</td>
<td>0.06</td>
<td>-0.19</td>
<td>0.28</td>
<td>-0.24</td>
</tr>
<tr>
<td>a*t</td>
<td>0.16</td>
<td>-0.21</td>
<td>0.27</td>
<td>1.00</td>
<td>-0.83</td>
</tr>
<tr>
<td>b*t</td>
<td>0.28</td>
<td>-0.08</td>
<td>0.36</td>
<td>-0.77</td>
<td>-0.88</td>
</tr>
<tr>
<td>R (%)</td>
<td>0.05</td>
<td>-0.26</td>
<td>0.16</td>
<td>-0.78</td>
<td>0.87</td>
</tr>
<tr>
<td>T (%)</td>
<td>0.07</td>
<td>-0.17</td>
<td>0.14</td>
<td>-0.31</td>
<td>0.27</td>
</tr>
<tr>
<td>L (%)</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.06</td>
<td>-0.10</td>
</tr>
<tr>
<td>L*10 (%)</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.22</td>
<td>-0.21</td>
</tr>
</tbody>
</table>

Art of wood

- total anual ring width (mm)
- annual ring width earlywood (mm)
- annual ring width latewood (mm)
- color (radial surface)
- color (tangential surface)
All Correlations ‘R’ with Phenolic Compounds

Correlation coefficient of **phenolic contents**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Correlation Coefficient (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total annual ring width (mm)</td>
<td>0.32</td>
</tr>
<tr>
<td>Annual ring width earlywood (mm)</td>
<td>0.29</td>
</tr>
<tr>
<td>Annual ring width latewood (mm)</td>
<td>0.35</td>
</tr>
<tr>
<td>L*r</td>
<td>0.43</td>
</tr>
<tr>
<td>a*r</td>
<td>0.47</td>
</tr>
<tr>
<td>b*r</td>
<td>0.28</td>
</tr>
<tr>
<td>L*t</td>
<td>0.37</td>
</tr>
<tr>
<td>a*t</td>
<td>0.29</td>
</tr>
<tr>
<td>b*t</td>
<td>0.27</td>
</tr>
<tr>
<td>R (%)</td>
<td>0.33</td>
</tr>
<tr>
<td>T (%)</td>
<td>0.30</td>
</tr>
<tr>
<td>L (%)</td>
<td>0.33</td>
</tr>
<tr>
<td>FSR (%)</td>
<td>0.68</td>
</tr>
<tr>
<td>Extractives content (%)</td>
<td></td>
</tr>
<tr>
<td>Density 0 (kg/m³)</td>
<td>0.32</td>
</tr>
<tr>
<td>Density max (kg/m³)</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Krüger, Varvic, Rademacher, Rousek
Computertomography \rightarrow Density, Growth Ring, Early/Late Wood
Computertomography → Density, Growth Ring, Early/Late Wood

Krüger, Varvic, Rademacher, Rousek
Computertomography → Density, Growth Ring, Early/Late Wood

YC 1/ Tree 5

YC 5/ Tree 2

Krüger, Varvic, Rademacher, Rousek
L. Clauder (FH), A. Maschmann-Fehrensen (HIT), F. Seemann (HIT)

Production of thermal modified OAK-Wood
Thermo Wood: Processes

Native behavior of water uptake and delivery

Permanent reduction due to OH-group decay

Effects
(+) Dimensional stability
(+) Fungi resistance

L. Clauder; A. Maschmann-Fehrensen, F. Seemann: Herstellung von thermisch modifiziertem Eichenholz
L. Clauder; A. Maschmann-Fehrensen, F. Seemann: Herstellung von thermisch modifiziertem Eichenholz
Thermo Wood: Processes

Color change relative to temperature

Treatment and utilisation of small dimensioned sessile oak wood

L. Clauder; A. Maschmann-Fehrensen, F. Seemann: Herstellung von thermisch modifiziertem Eichenholz
Color change relative to temperature

Treatment and utilisation of small dimensioned sessile oak wood

Effects

(+) Cross-Sections of up to 60 mm totally modified.

(+) Wood assortments in Furniture and Indoor-Sector as well as Flooring realised!

L. Clauder; A. Maschmann-Fehrensen, F. Seemann: Herstellung von thermisch modifiziertem Eichenholz
Thermo Wood: Processes

Cracking and shortening of strength responsible cellulose chains

Komplex changes and decay of the Wood Material

Effect

(-) Loss of strength due to heat treatment

L. Clauder; A. Maschmann-Fehrensen, F. Seemann: Herstellung von thermisch modifiziertem Eichenholz
Thermo Wood: Processes

Possible disposal due to previous technical drying (species-specific)

Cracks due to retention during high-temperature periods

Effect

(-) Material damage due to drying or heat treatment

L. Clauder; A. Maschmann-Fehrensen, F. Seemann: Herstellung von thermisch modifiziertem Eichenholz
Native Oak Wood: UMSP-Scan

Strong native inclusion of heartwood components in the cell wall
Thermo-Wood: Results

Material strength + hardness

Modification steps (n=40)

<table>
<thead>
<tr>
<th>Modification</th>
<th>Bending strength</th>
<th>Brinell hardness tang</th>
<th>Brinell hardness rad</th>
</tr>
</thead>
<tbody>
<tr>
<td>nativ</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>160 °C</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>180 °C</td>
<td>85</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>190 °C</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>200 °C</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
</tbody>
</table>

L. Clauder; A. Maschmann-Fehrensen, F. Seemann: Herstellung von thermisch modifiziertem Eichenholz
Thermo-Wood: Results

Maximal Swelling

<table>
<thead>
<tr>
<th>Modification steps (n=40)</th>
<th>Absolute maximal swelling (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>nativ</td>
<td>10</td>
</tr>
<tr>
<td>160 C°</td>
<td>9</td>
</tr>
<tr>
<td>180 C°</td>
<td>8</td>
</tr>
<tr>
<td>200 C°</td>
<td>7</td>
</tr>
</tbody>
</table>

L. Clauder; A. Maschmann-Fehrensen, F. Seemann: Herstellung von thermisch modifiziertem Eichenholz
Parquett floor – left: Abrasion test of untreated and different treated samples; right: Makro-Viewe

L. Clauder; A. Maschmann-Fehrensen, F. Seemann: Herstellung von thermisch modifiziertem Eichenholz
Results

Outdoor test of durability untreated and different treated samples; left: Utilization classes 3 (GK 3 Dobble layer test). Right: Samples of Utilisation class 4 (GK 4 Earth contact)

L. Clauder; A. Maschmann-Fehrensen, F. Seemann: Herstellung von thermisch modifiziertem Eichenholz
Ergebnisse

Abb. 5: Gartenbank - Vergleichstest zur Verklebung von unbehandelten gegenüber unterschiedlich stark modifizierten Proben

L. Clauder; A. Maschmann-Fehrensen, F. Seemann: Herstellung von thermisch modifiziertem Eichenholz
• Oak was declassified into DC 2-4
• Strong varying properties
• Correlations/ reasons still unclear on this step of investigation
• Final durability and single phenol content needed
• Heat treatment improves most properties
 • Durability → other investigations
 • Swelling/ shrinkage
 • Hardness + strength up to moderate heating (180°C)