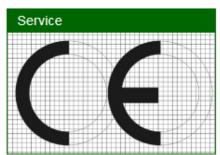


Sesto Fiorentino, Firenze


UOS San Michele all'Adige, Trento

UOS Catania

Press release

CNR, Consiglio Nazionale sulle ricerche

IVALSA, Istituto per la Valorizzazione del Legno e delle Specie Arboree

Life Cycle Assessment of wood wool cement board using recycled wood

M. Marra, S. Guercini

COST Action FP1407 2nd Conference: Innovative production technologies and increased wood products recycling and reuse Brno, Czech Republic, 29-30 September 2016

Life Cycle Assessment is a methodology to evaluate the environmental burdens associated with a product, by identifying and quantifying materials and energy used and wastes released to the environment.

The eco-profile resulting from LCA can help to identify and evaluate opportunities to improve environmental performances of the product assessed.

A cradle-to-gate LCA was performed to identify the environmental impacts related to wood wool cement board production.

It was developed by a sensitivity analysis of the raw material sources:

- logs obtained by forest thinning
- recycled timber waste of building demolition

The sensitivity analysis was carried out taking into account the influence of the percentage of recycled wood.

WWCB is a building material made from wood wool and cement.

WWCB is a building material made from wood wool and cement.

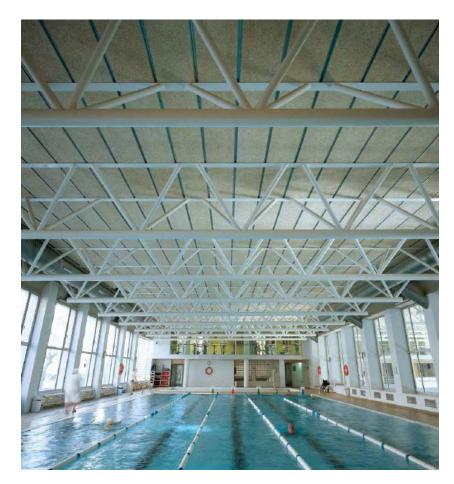
- Acoustic performance
 - noise absorption
 - sound insulation

WWCB is a building material made from wood wool and cement.

- Acoustic performance
- Thermal properties
 - heat accumulation
 - thermal insulation

WWCB is a building material made from wood wool and cement.

- Acoustic performance
- Thermal properties
- Fire resistance
 - Euroclass Bs1 fire reaction



WWCB is a building material made from wood wool and cement.

- Acoustic performance
- Thermal properties
- Fire resistance
- Internal and external use
 - low dilatation coefficient
 - mould and fungi resistance

WWCB is a building material made from wood wool and cement.

LCA. Goal and scope

Goal was to fulfill a comprehensive life cycle inventory of wood wool cement board manufacture.

Scope was to develop and improve the product design.

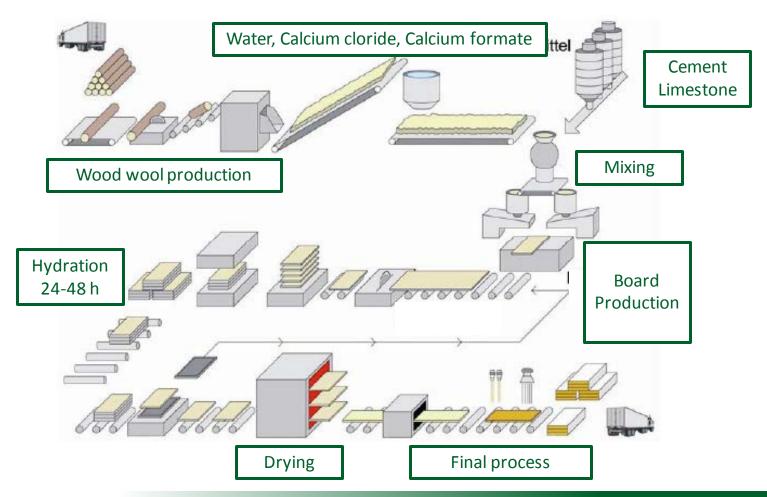
Factory

- Northeast Italy
- 100.000 m³/year

Data quality

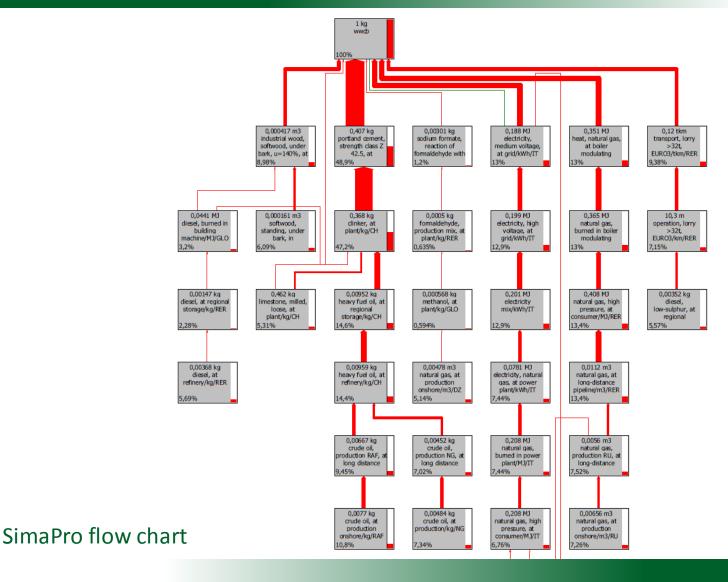
- 2 years on-site measurement
- Ecoinvent v3.1 and JRC ILCD database

Metodology


- ISO 14040
- LCIA: ReCiPe Midpoint (H) v1.12
- Functional unit: mass, 1 kg WWCB
- System boundary: cradle-to-gate

LCA. Goal and scope

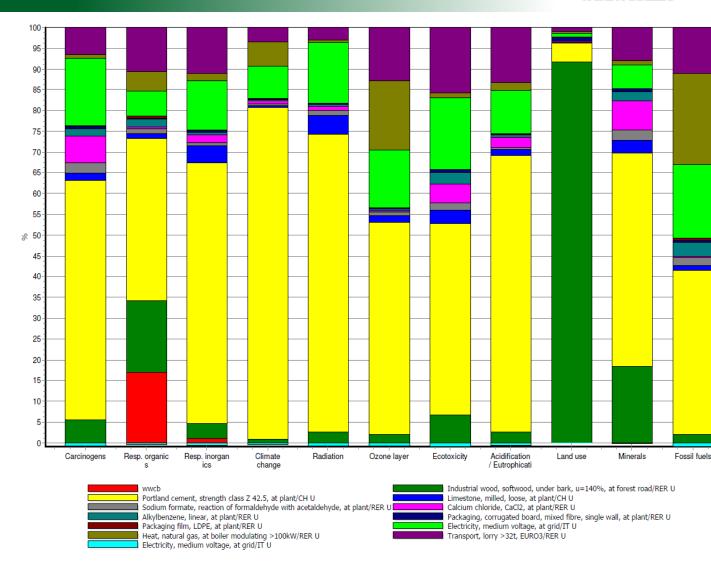
System boundary



• Life cycle inventory inputs, outputs and impact indicators were quantified using functional unit

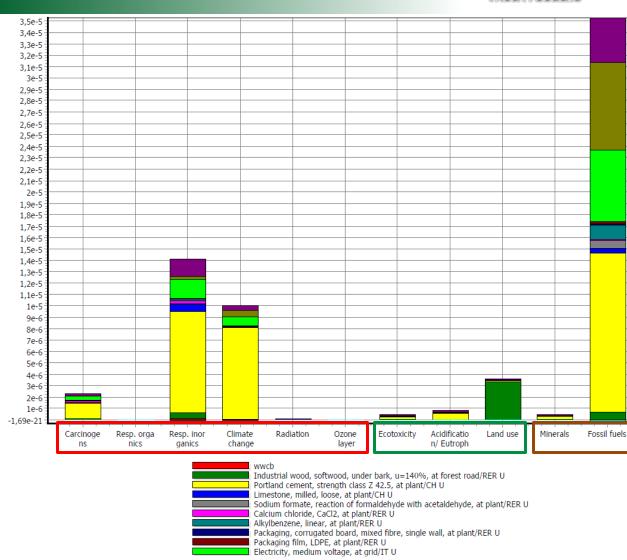
Inputs		Outputs	
Water, groundwater consumption	0,28658 kg	Methanol	0,00627 g
Industrial wood, softwood, under bark, u=140%, at forest road	0,41731 dm³	Dimethyl formamide	0,00208 g
Portland cement, at plant	0,40647 kg	2-Butoxyethanol acetate	0,00170 g
Limestone, milled, loose, at plant	0,14997 kg	Benzene, ethyl-	0,00015 g
Sodium formate, at plant	0,00301 kg	Isopropyl acetate	0,00055 g
Calcium chloride, CaCl ₂ , at plant	0,00319 kg	Acetone	0,00050 g
Alkylbenzene, linear, at plant	0,00095 kg	Ethanol	0,00029 g
Packaging, corrugated board, at p.	0,00053 kg	Heptane	0,03156 g
Packaging film, LDPE, at plant	0,00014 kg	Particulates, unspecified	0,01094 g
Electricity, medium voltage, at grid	0,05505 kWh	Wood, sawdust	0,01566 kg
Heat, natural gas, at boiler >100kW	0,35113 MJ	Rejects	0,01450 kg
Transport, lorry >32t, EURO3	120,4 kgkm	Packaging waste	0,00003 kg

LCI. Network flow chart



LCIA. Characterization. Midpoint

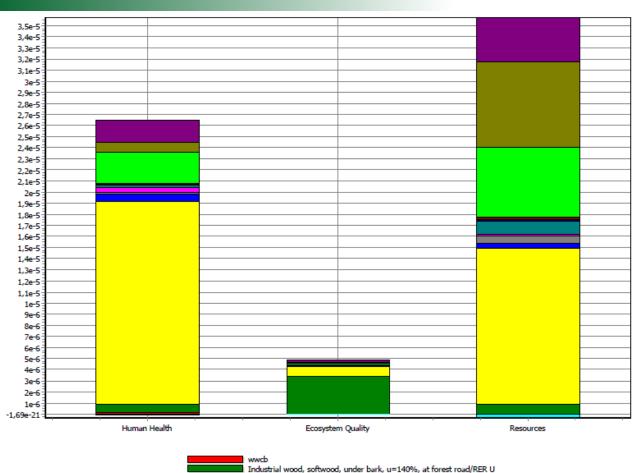
Impact categoryabsolute



LCIA. Normalization. Midpoint

Impact category

relative



LCIA. Normalization. Endpoint

Damage category

Portland cement, strength class Z 42.5, at plant/CH U

Sodium formate, reaction of formaldehyde with acetaldehyde, at plant/RER U

Packaging, corrugated board, mixed fibre, single wall, at plant/RER U

Limestone, milled, loose, at plant/CH U

Calcium chloride, CaCl2, at plant/RER Ú Alkylbenzene, linear, at plant/RER U

Packaging film, LDPE, at plant/RER U Electricity, medium voltage, at grid/IT U

Recycled wood

WWCB producers have interest in utilizing recycled wood.

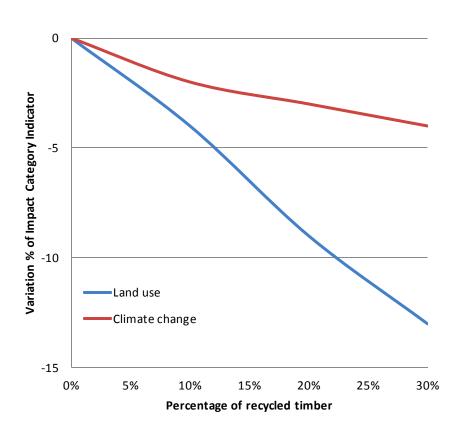
- presence of pollutants,
- shape and dimension of timber,
- incompatibility with equipment and technology processes

Recycled wood

Wood Wool Production

Recycled wood

Demolition collection centre



Recycled waste quality requirements and production system specifications were considered to develop the recycling management.

Sensitivity analysis

Raising the fraction of recycled timber from 0 to 30% respect to virgin log

- decreases the consumption of land (-13% m² yr of "Land use") and
- reduces the global warming potential (-4% CO_{2eq} to air) of "climate change".

Conclusions

- The use of recycled timber helps to reduce environmental impacts in the WWCB manufacturing process.
- To develop wood recycling in the WWCB production is necessary to consider
 - waste quality requirements,
 - production system specifications.

Thank you

marra@ivalsa.cnr.it

Life Cycle Assessment of wood wool cement board using recycled wood

