

Olli Paajanen Wood Laboratory Mikkeli University of Applied Sciences

COST fp1407 2nd Conference Brno, Czech Republik, 29-30 September 2016

Overview

- Background Mikkeli University of Applied Sciences
- New modification equipment
- Considerations for preparing the LCA
- Conclusions

Mikkeli University of Applied Sciences

European Union European Regional Development Fund

Mikkeli University of Applied Sciences

- Main activities: teaching, research services to companies and larger projects (public+industrial funding)
- Traditional areas of interest at wood lab:
 - Impregnation, heat treatment, timber drying
- Good test facilities
 - Mechanical, biological, accelerated weathering etc.
 - Other labs of the Mamk are also at our disposal
 → SEM, DMA, DSC, TGA, ETC.
- Welcome!

Why – the Motivation for developing Wood Modification in Mikkeli?

- Previous projects, knowledge/expertise
- Area of interest, esp. durability of wood
- Needs of the industry
- Modification active field of wood research
- Potential to use wood to substitute other materials?
- Some commercial high value applications e.g. with high melting point waxes
- LCA not much experience esp. with wood products, but must be considered in the future/must be included in some form

The Project Pumok -PUun MOdifioinnin Kehittäminen

- The aim: develop pilot manufacturing, research and testing environment of modern wood modification technologies
 - Supports the needs of companies to develop their products and processes
 - Especially to develop high value added wood products that are treated with hot natural oil and/or wax mixtures, with reasonable costs
 - For instance, could modified wood replace use of aluminum in windows or could nordic wood species subsitute tropical hardwoods in certain end uses?
- Companies involved in the project: Stora Enso Wood Products Oy Ltd, Hexion Oy, Tehomet Oy, Karelia-Ikkuna Oy, Kurikka Timber Oy, Lieksan Saha Oy
- Funded by the companies and the European Regional Development fund
 - Regional strategy aims to increase the use of wood as well as the value of wood products manufactured in the region

New modification equipment for testing high melting point waxes/oils/?

The New Modification Equipment

- Versatile, several process options
 - Hot wax and oil treatments
 - Thermal modification
 - Traditional impregnation
 - Drying processes
- Specs:
 - Up to 200 °C, 15.5 bar
 - Nitrogen/steam atmosphere
 - Storage vessel 250 l
 - Oil heating/cooling
 - Chamber diameter 380 mm, length 2000 mm → industrial scale/pilot production possible
 - Lab device or pilot plant?

Timeline

- Project started November 2014
- Device installation delayed for various reasons
- Equipment in limited operation 3/2016
 →Wax experiments started asap
- I started in Mikkeli 3/2016

Some observations from the recent experiments

- In the end, most important: gathering experience about the functionality of the system, wax-wood interaction in the process etc.
- Minor bugs in the system, also some technical issues, that have been solved
- Device works, mostly as intended
- Wax properties have a major role
 - Not only melting point, also molecular size etc. In principle only small differences between wax specs, but large difference in the way they act in the process
- Industrial waxes designed for other end uses suitability?
- Process parameters are compromise
 - Process affects the wood
 - What is important for the specific end use?
- Process and device development is very time consuming, perhaps not enough emphasis on this aspect
- *Modification or impregnation?*

LCA and the new system?

- The project plan includes a LCA section...
 - One driver for the development of the system
 - Provides evidence about the performance and environmental claims
- LCA-program is available; basic data on the materials, processes and function of the device are available
- But in practice?
 - What type of LCA?
 - Experimental or industrial process?
 - Process specifics? What to include?

The Process, Materials and Energy

Description of the basic process

- The process starts when a wood component is placed in a chamber the chamber is sealed
- There is an oil circulation system that both heats and cools the chamber, if necessary.
- The wax is melted to liquid form in a heating cylinder, then pumped into the impregnation chamber
- Compressed air is used to operate the valves in the system
- As the pressure is lowered in the chamber, there are some emissions to air and there is also bound to be some wax residue or waste in the process
- Water is used in the cooling system and vacuum pump and electricity is needed for all functions in the process
- The simplified system a pilot scale process while the basic process the details of a similar, a full scale industrial system will be different and this will have an impact on the LCA.
 - For instance, the choice of energy sources, especially heat; recycling of process waste etc.
- It is also essential to consider, how the modification process is integrated to a larger manufacturing process – the modification is just one part in the manufacturing of a final product

About the LCA

- What are the goals and purpose for doing it?
- Simple type what does the process add "on top off" e.g. sawing process?
 - Does it work that way? How to integrate into real life process?
- Comparative LCA what was really asked or needed?
 - Comparative study on different impregnation processes?
 - Different impregnants
 - Different process parameters, wood moisture
 - Different service life, maintenance, end of life?
 - Comparative study on window frame materials?
 - Pine, heartwood, hardwood, PVC, wood-aluminum, wax impregnated, other?
 - Different service life, maintenance, end of life?
 - Manufacturing processes very different system boundaries?
 - Cradle to gate? Grave?

The comparative LCA?

- Goal and Scope
- Functional unit
- System boundaries
- Allocation methods
- Impact categories
 - Many relevant, not only GHG!

Conclusion – aim for the future

- Work in progress teaches a lot
- Many aspects to consider when doing LCA, also experience is essential
- The aim in wood modification is to improve the performance of a wood product - many promises have been made about the advantages of various modification procedures
 - The performance may be better, the process itself consumes energy and in most cases some substances are also used in the treatment process
 - Does the improvement in the properties justify the more complicated manufacturing process - increased costs, material and energy inputs?
- LCA is a valuable tool: even though it is focused on the environmental performance of the product, the approach and framework help to understand the manufacturing process better also from other viewpoints

Thank you!

This project is funded by European Regional Development Fund through South Savo Regional Council as well as companies: Mikkeli University of Applied Sciences, Hexion Oy, Karelia-Ikkuna Oy, Kurikka-Timber, Lieksan Saha Oy, Stora Enso Wood Products Oy Ltd and Tehomet Oy

Mikkelin ammattikorkeakoulu / www.mamk.fi