# END-OF-LIFE TRANSFORMATION STRATEGIES FOR BIO-BASED BUILDING MATERIALS



Anna Sandak & Jakub Sandak,





# **BIO4ever project objectives**

- Assuring sustainable development of the woodrelated construction industry
- Promoting innovative facades made from biomaterials with minimal environmental impact
- Improving sustainability of biomaterials by proposing alternative transformations at the end-of-use

### **Construction market**

Is one of the major employment sectors across the EU (496 billion € of value added).

The sector provides 20 million direct jobs and contributes to about 10 % of the EU's GDP

Represents a large proportion of the consumption of the earth's non-renewable resources in terms of:

 materials used for construction

• energy consumption for operation of buildings



## Why biomaterials?

- Bio-based materials have the potential to produce fewer greenhouse gases, require less energy, and produce smaller amounts of various toxic pollutants along their lifecycle.
- The expansion of bio-based products availability and their wide utilization in modern buildings is a derivative of the Europe 2020
- It must be demonstrated that biomaterials are significantly more favorable than the corresponding mineral and fossil-based alternatives, technically competitive, and reasonably durable

#### **Bio-materials in construction sector**

- In Italy 1 on 12 buildings is made of wood and growing tendency is observed nowadays
- Bio-based materials are often used for retrofitting of existing structures, upward construction or vertical gardens
- Buildings that use bio-materials are not just sustainable, strong and durable; they are also beautiful

























### A key issue in building construction: durability and performance

























## **Development priorities**

#### Structural components

(need for developed wood products -Engineered Wood Products, high strength wood, moisture resistant sills, light-weight beams/joists/studs of bio-composites, sandwich panels for exterior walls)

#### Insulation

(need for compactable bats of cellulose insulation, environmentally friendly fire impregnation, high-performance insulation that provides thinner walls, insulation, optimized for soundproofing)

#### Barrier Materials

(need for bio-based wind and vapor barrier for moisture-proof exterior walls, waterproofing for wet areas, **façade** and roofing materials **with improved durability/serviceability** 

Source: Per-Erik Eriksson: Future sustainable biobased buildings





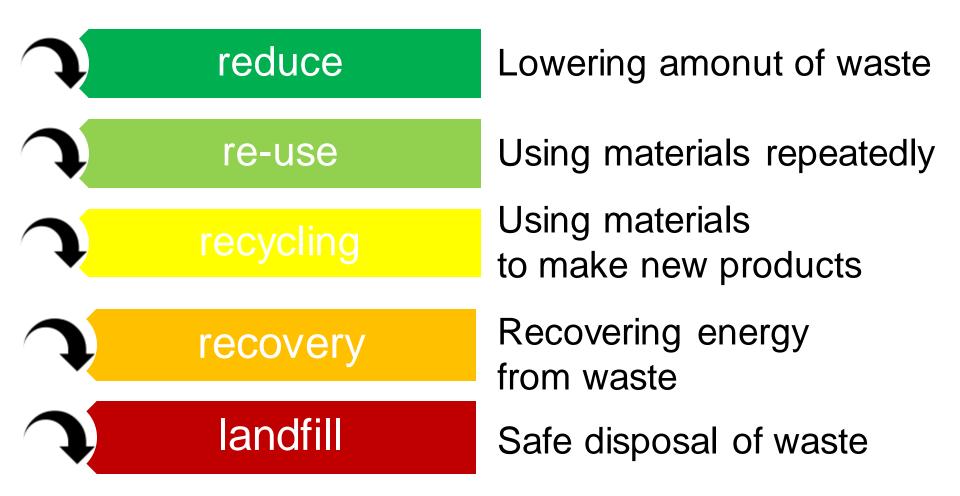


### **Experimental samples**

31 companies & research organization from 17 countries provided best performing building facades biomaterials

The experimental samples include: different wood species from various provenances, thermally and chemically modified wood, composite panels, samples finished with silicone, silicate, nano-coatings, innovative paints and waxes, melamine treated wood, copper treated wood, bamboo cladding, reconstituted slate made with bio-resin and shou-sugi-ban.

Consequently, 120 various bio-materials are currently under investigation


#### Life cycle diagram



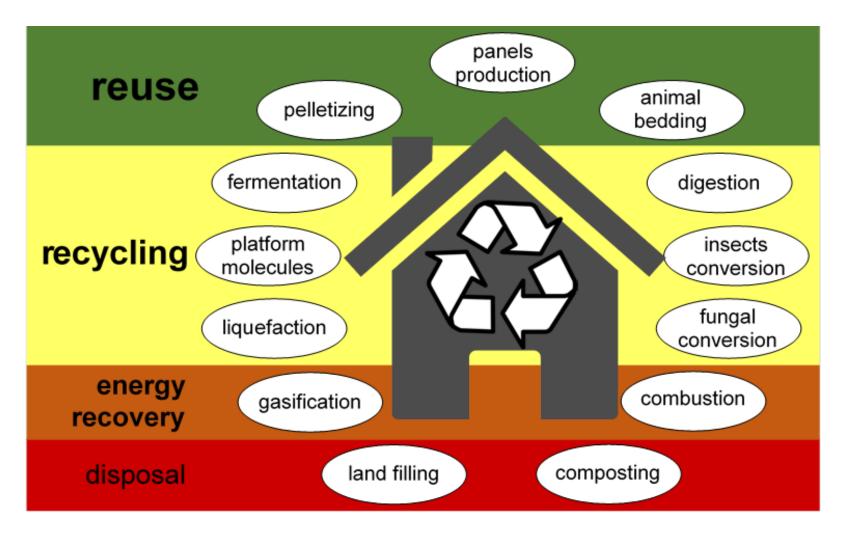
# Wates in Europe



# Waste management scenarios



### **Biomaterials end-of-life**




# Patways flexibility and developmnet

| Processing<br>technology | Feedstock<br>flexibility | Conversion<br>efficiency | Market value<br>of product | Development<br>status |
|--------------------------|--------------------------|--------------------------|----------------------------|-----------------------|
| combustion               | high                     | low                      | low                        | established           |
| digestion                | low                      | medium                   | medium                     | established           |
| fermentation             | low                      | medium                   | high                       | established           |
| pyrolysis                | high                     | medium                   | medium                     | established           |
| gasification             | medium                   | medium                   | medium                     | established           |
| platform<br>molecules    | medium                   | medium                   | high                       | early commercial      |
| liquifaction             | high                     | low                      | high                       | lab traials           |
| panels<br>manufacturing  | high                     | high                     | high                       | established           |
| animal bedding           | high                     | medium                   | low                        | established           |
| peletizing               | high                     | high                     | high                       | established           |
| insects<br>conversion    | medium                   | medium                   | high                       | lab traials           |
| fungal conversion        | medium                   | medium                   | high                       | lab traials           |
| composting               | high                     | low                      | low                        | established           |
| land filling             | high                     | low                      | low                        | established           |

Source: BIOMASS TECHNOLOGY REVIEW: PROCESSING FOR ENERGY AND MATERIALS, modified

# Pathways for end of life transformation



## Acknowledgment

- This work has been conducted within the project BIO4ever (RBSI14Y7Y4) within a call SIR funded by MIUR.
- The authors acknowledge COST action FP1407 for providing the travel reimbursement





#### **BIO4ever project partners**



# Thank you





www.bio4everproject.com