Feasibility of highly durable plywood production with poplar wood as a substitute of tropical species

Giacomo Goli1, Francesco Negro2, Corrado Cremonini2, Roberto Zanuttini2, Marco Fioravanti1

1 GESAAF - University of Florence
2 DISAFA – University of Turin
The material was heat treated at 180/190°C in a conventional air ventilated oven:
- Poplar I-214 euro-american clone veneers
- Ceiba veneers
- Poplar UF glued plywood panel
- Poplar MUF glued plywood panel

After heat treatment, Poplar and Ceiba veneers were glued with MUF resins in order to verify the effect of heat treatment on the glues.
Two heat treatments were performed:
T1 – up to ~ 5 % ML_0
T2 – up to ~ 7 % ML_0

Some physical:
$MC - ML_0 - ML_{12} - \rho_{12} - \rho_{L_{12}}$ (EN 322 – EN 323)

and mechanical properties were determined:
MOE – MOR (EN 310) (# samples going from 3 to 30)

Bonding quality was analysed as well:
$f_v – ACWF$ (EN 314) (# samples going from 12 to 45)
Results

- Dry mass losses from 5 to 8 % corresponds to density losses from 7 to 10 %

- The gluing of treated veneers can lead to permanent deformations during pressing operations

- MOE does not present statistically significant reductions after heat treatment

- MOR reduction vary from 25 to 50 % and few statistically significant differences can be observed between T1 and T2 and post panels presents better results than pre panels
Results

• Glues shear strength reduction vary from 55 to 80%. *Post* panels seem to behave better than *pre* panels even if the difference is not very large.

• MUF resins show an higher ACWF after heat treatment. This could depend on a larger effect of the treatment on the wood than on the glue.

Thank you